
This information is provided to outline Databricks’ general 
product direction and is for informational purposes only. 
Customers who purchase Databricks services should 
make their purchase decisions relying solely upon 
services, features, and functions that are currently 
available. Unreleased features or functionality described in 
forward-looking statements are subject to change at 
Databricks discretion and may not be delivered as 
planned or at all

Product safe harbor statement



©2024 Databricks Inc. — All rights reserved

Deep Dive into 
Delta Lake and 
UniForm

Sirui Sun, Sunitha Beeram
June 2024



©2024 Databricks Inc. — All rights reserved

Agenda

1. Intro to Delta Lake and core capabilities

2. Unpacking the Transaction Log Protocol

3. Data Layout Innovations 

4. Uniform

5. Use cases

6. Roadmap

3



©2024 Databricks Inc. — All rights reserved

Tech Check



©2024 Databricks Inc. — All rights reserved



©2024 Databricks Inc. — All rights reserved

Cats or 
Dogs?

6



©2024 Databricks Inc. — All rights reserved

Delta Lake

7



©2024 Databricks Inc. — All rights reserved

Delta Lake with UniForm is an open format 
that brings performance, interoperability, 
and ACID transactions to open data lakes.



©2024 Databricks Inc. — All rights reserved

Delta Lake Key Features

Time Travel
Access/revert to earlier 

versions of data for 
audits, rollbacks, or 

reproduce 

ACID Transactions
Protect your data with 

serializability, the 
strongest level of 

isolation. 

Scalable Metadata
Handle petabyte-scale 
tables with billions of 
partitions and files at 

ease

Unified 
Batch/Streaming

Exactly once semantics 
ingestion to backfill to 

interactive queries

Schema Evolution / 
Enforcement

Prevent bad data from 
causing data corruption 

Audit History
Delta Lake log all change 

details providing a full 
audit trail 

DML Operations
SQL, Scala/Java and 

Python APIs to merge, 
update and delete 

datasets 

9

Open Source 
Community driven, open 

standards, open 
protocol, open 

discussions



©2024 Databricks Inc. — All rights reserved

Delta Lake - quickstart

bin/spark-sql
--packages io.delta:delta-spark_2.12:3.1.0
--conf "spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension"
--conf "spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog"

CREATE TABLE cat.sch.tbl` USING DELTA
AS SELECT col1 as id
FROM VALUES 0,1,2,3,4;



Thriving ecosystem

=

Java Ecosystem

aws-
pandas-sdk

rayairbyte

polars

arrow

Power BI

pandas

daskduck DB

Startree 
(pinot)

beam

ballista

kafka

data fusion

pulsar flinkprestodb hive

trino glueathena

emr dlt (spark-r) azure synapse
delta-
spark

redshift datahubC++

Excel

Golang

Java

Power BIR-StatsRust

Delta Sharing

Delta 
Protocol

Kernel

Java Ecosystem

aws-
pandas-sdk

ray
airbyte

polars arrow

Fabric

pandas

daskduck DB

Startree 
(pinot)

beam

ballista

kafkadata fusion

pulsar flinkprestodb hive

redshift datahub

C++

Excel

Golang

Java

Power BI

R-Stats

Delta 
Sharing

Delta Kernel

UniForm

Delta 
Protocol

Snowflake 

Google BigQuery

Apache 
Impala

Apache 
Doris

Rust

Delta Sharing

trino glueathena

emr dlt (spark-r) azure synapse
delta-
spark

delta-rust 

deltalake



Thriving ecosystem

Delta Flink

Delta Trino 

Delta Rust / deltalake Python

Apache Druid

Google BigQuery

DuckDB

=

Java Ecosystem

aws-
pandas-sdk

rayairbyte

polars

arrow

Power BI

pandas

daskduck DB

Startree 
(pinot)

beam

ballista

kafka

data fusion

pulsar flinkprestodb hive

trino glueathena

emr dlt (spark-r) azure synapse
delta-
spark

redshift datahubC++

Excel

Golang

Java

Power BIR-StatsRust

Delta Sharing

Delta 
Protocol

Kernel

Java Ecosystem

aws-
pandas-sdk

ray
airbyte

polars arrow

Fabric

pandas

daskduck DB

Startree 
(pinot)

beam

ballista

kafkadata fusion

pulsar flinkprestodb hive

redshift datahub

C++

Excel

Golang

Java

Power BI

R-Stats

Delta 
Sharing

Delta Kernel

UniForm

Delta 
Protocol

Snowflake 

Google BigQuery

Apache 
Impala

Apache 
Doris

Rust

Delta Sharing

trino glueathena

emr dlt (spark-r) azure synapse
delta-
spark

New or significantly updated

delta-rust 

deltalake

now i forget 



©2024 Databricks Inc. — All rights reserved

Community

● 11+ repos in the project
○ production and incubator projects

● > 50 releases
○ Latest: Delta 3.2, Delta Rust 0.17

● Very active community
○ ~9K Github stars
○ ~500 contributors
○ Slack: ~10K members
○ LinkedIn: ~50K members
○ YouTube: ~2.5K subscribers



©2024 Databricks Inc. — All rights reserved

Databricks Non-Databricks

2x

Delta Lake - Pull Requests Merged
Source: Linux Foundation Insights



©2024 Databricks Inc. — All rights reserved

Delta Lake:
The most adopted open lakehouse format 

9+ exabytes

processed 
per day

60%+

Fortune 500 
Adoption

Scalable Prevalent

>10K+

Companies 
in production

Reliable

>500

Contributors

Open

80+

New 
features / 

year

Innovative

1B+

Clusters per 
year

Popular

2x yearly growth



©2024 Databricks Inc. — All rights reserved

The biggest Delta Lake release yet

Row IDsLog 
compactions

Incremental 
checkpoints

Table features

Table cloning MERGE 
improvements

CDF

Optimized 
Writes

Auto-
compaction

Delta 3.0 Delta 4.0

VARIANT

Lightning fast 
semi-structured 

data

Collations

Flexible sort and 
comparison

Identity 
columns

Pain-free primary 
and foreign keys

Coordinated 
Commits

Cross cloud, cross 
engines

Deletion 
Vectors

Liquid 
clustering

Delta Kernel

Spark 
Connect

Better stability, 
upgradability

UniForm GA

Write once, read as 
all formats

Liquid GA

Easy migration 
from partitioned 

tables

Type 
widening

Data types expand 
with your data



©2024 Databricks Inc. — All rights reserved

POP QUIZ

18



©2024 Databricks Inc. — All rights reserved 19

Unpacking the transaction log



©2024 Databricks Inc. — All rights reserved

Delta Lake on Disk

/mytable/
_delta_log/

00010.checkpoint.parquet
00011.json
00012.json
_last_checkpoint

_change_data/
cdc-file1.snappy.parquet

date=2024-06-14/
file-1.snappy.parquet

deletion_vector1.bin



©2024 Databricks Inc. — All rights reserved

(Optional) Deletion Vectors

/mytable/
_delta_log/

00010.checkpoint.parquet
00011.json
00012.json
_last_checkpoint

_change_data/
cdc-file1.snappy.parquet

date=2024-06-14/
file-1.snappy.parquet

deletion_vector1.bin

Delta Lake on Disk

Transaction Log

Commits & Checkpoints

Checkpoint pointer

(Optional) Change Data 

(Optional) Partition Directories
Data



©2024 Databricks Inc. — All rights reserved

Table = result of a set of actions
Metadata – name , sc he ma, part it ioning, e tc
Add  File  – adds  a  file  (with op t ional s ta t is t ic s )
Re move  File  – re move s  a  file
Transac t ion Ide nt ifie r – re c ords  an ide mpote nt  t ransac t ion id
Protoc ol Evolut ion – upgrade s  the  ve rs ion of the  txn p rotoc ol
Commit  Prove nanc e  – add it ional informat ion about  what  highe r- le ve l 
ope rat ions  was  be ing pe rforme d  as  we ll as  who e xe c ute d  it

Result: Current Metadata, List of Files, List of Txns, Version



©2024 Databricks Inc. — All rights reserved

Example of an addFile action

The add action is used to 
modify the data in the table 
by adding individual files 
respectively.  

{
"add": {
"path": "date=2017-12-10/part-000...c000.gz.parquet",
"partitionValues": {"date": "2017-12-10"},
"size": 841454,
"modificationTime": 1512909768000,
"dataChange": true,
"baseRowId": 4071,
"defaultRowCommitVersion": 41,
"stats": "{\"numRecords\":1,\"minValues\":{\"val..."

}
}

Path, partitionValues, 
size, modificationTime
and dataChange are 
required fields.  Other 
fields like stats, tags, 
and clusteringProvider
are optional.



©2024 Databricks Inc. — All rights reserved 24

ACID properties



©2024 Databricks Inc. — All rights reserved

Implementing Atomicity

Changes to the table 
are  s tore d  as  orde re d , 
a tomic  unit s  c alle d  
commits

Add 1.parquet

Add 2.parquet000000.json

Remove 1.parquet

Remove 2.parquet

Add 3.parquet

000001.json



©2024 Databricks Inc. — All rights reserved

Ensuring Serializability

Need to agree on the 
orde r of c hange s , e ve n 
whe n the re  are  mult ip le  
write rs .

000000.json

000001.json

000002.json

User 1 User 2



©2024 Databricks Inc. — All rights reserved

Solving Conflicts Optimistically

1. Re c ord  Start  
Ve rs ion

2. Re c ord  re ads /write s
3. At te mp t  c ommit
4 . If some one  e lse  

wins , c he c k if 
anything you re ad  
has  c hange d

5. Try again

000000.json

000001.json

000002.json

User 1 User 
2

Write: Append

Read: Schema

Write: Append

Read: Schema



©2024 Databricks Inc. — All rights reserved 28

Transactions and reliability are 
great, but what about performance?



©2024 Databricks Inc. — All rights reserved

Handling Massive Metadata

Large tables can have millions of files.  Delta Lake can use a distributed 
e ngine  for sc aling

Add 1.parquet

Add 2.parquet
Remove 1.parquet

Remove 2.parquet

Add 3.parquet

Checkpoint



©2024 Databricks Inc. — All rights reserved

Updating Delta Lake’s State

000000.json

000001.json

000002.json

000003.json

000004.json

000005.json

000005.json

000006.json

000007.json

Checkpoint

listFrom version 0

Cache 
version 7



©2024 Databricks Inc. — All rights reserved

Updating Delta Lake’s State

000000.json

...

000007.json

000008.json

000009.json

0000010.json

0000010.checkpoint.parquet

0000011.json

0000012.json

Checkpoint

Cache 
version 12

listFrom version 7

Read the checkpoint



©2024 Databricks Inc. — All rights reserved

Finding the latest metadata

/mytable/ 
_delta_log/

0000.json
0001.json
0002.json
…

0100.checkpoint.parquet
0101.json
…

0200.checkpoint.parquet
0201.json
_last_checkpoint

…

The Delta transaction log can contain 
many (e .g. 10 ,0 0 0 +) c ommits  and  this  
c an take  a  long t ime  to lis t

_last_checkpoint p rovide s  a  pointe r 
to ne ar the  e nd  of the  log

listFrom s torage  API p rovide s  the  
ab ility to lis t  only from the  las t  known 
c he c kpoint



©2024 Databricks Inc. — All rights reserved 33

Time Travel



©2024 Databricks Inc. — All rights reserved

Time Traveling by version

SELECT * FROM my_table VERSION AS OF 500;

SELECT * FROM my_table@v500

spark.read.option("versionAsOf", 500).load("/some/path")

spark.read.load("/some/path@v500") 

deltaLog.getSnapshotAt(500)



©2024 Databricks Inc. — All rights reserved

Time Traveling by timestamp
SELECT * FROM my_table TIMESTAMP AS OF '2019-10-16';

SELECT * FROM my_table@20191016000000000 -- yyyyMMddHHmmssSSS

spark.read.option("timestampAsOf", "2019-10-16").load("/some/path") 

spark.read.load("/some/path@20191016000000000")  

deltaLog.getSnapshotAt(500)



©2024 Databricks Inc. — All rights reserved

Time Traveling by timestamp

001070.json 2019-10-16

001071.json 2021-05-24

001072.json 2022-07-20

001073.json 2022-06-30

Commit timestamps come from storage system modification timestamps



©2024 Databricks Inc. — All rights reserved

Time Traveling by timestamp

001070.json 2019-06-19 2019-06-19

001071.json 2021-05-24 2021-05-24

001072.json 2022-07-20 2022-07-20

001073.json 2022-06-30 2022-07-20 
00:00:00.01

Timestamps can be out of order.  We adjust by adding 1 millisecond to the 
previous commit’s timestamp



©2024 Databricks Inc. — All rights reserved

Time Traveling by timestamp

001070.json 2019-06-19

001071.json 2021-05-24

001072.json 2022-07-20

001073.json 2022-07-20 00:00:00.01

Price is right rules - pick the closest commit timestamp that doesn’t 
exceed the users timestamp

2022-04-13



©2024 Databricks Inc. — All rights reserved 39

The Single Source of Truth!



©2024 Databricks Inc. — All rights reserved

Information required to plan a query

1. Schema

2. Partition Columns 
and values

3. Files to read
4. File Statistics
5. Protocol (Delta 

Only)

1. HMS or inferred from file 
footer

2. HMS or inferred

3. FileSystem listing
4. NA
5. NA

Information Parquet Source

1. Transaction Log

2. Transaction Log

3. Transaction Log
4. Transaction Log
5. Transaction Log

Delta Lake Source



©2024 Databricks Inc. — All rights reserved

Getting the schema of a Delta Lake table

{

"metaData":{

"id":"af23c9d7-fff1-4a5a-a2c8-55c59bd782aa",

"format":{"provider":"parquet","options":{}},

"schemaString":"...",

"partitionColumns":[],

"configuration":{

"appendOnly": "true"

}

}

}

Read the transaction log!

Collect all the metadata actions for 
your table

Merge the schema strings together

Time Travel allows you to go back 
before meta changes!



©2024 Databricks Inc. — All rights reserved

Getting the partition columns

{

"metaData":{

"id":"af23c9d7-fff1-4a5a-a2c8-55c59bd782aa",

"format":{"provider":"parquet","options":{}},

"schemaString":"...",

"partitionColumns":[],

"configuration":{

"appendOnly": "true"

}

}

}

Read the transaction log!

Collect all the metadata actions for 
your table

Collect list of partition columns

Scales to millions of partitions



©2024 Databricks Inc. — All rights reserved

Getting the list of files to read

{

"add": {

"path": "date=2017-12-10/part-000...c000.gz.parquet",

"partitionValues": {"date": "2017-12-10"},

"size": 841454,

"modificationTime": 1512909768000,

"dataChange": true,

"stats": "{\"numRecords\":1,\"minValues\":{\"val..."

}

}

Read the transaction log!

Collect all the add file actions

Apply partition and data filters

Collect list of paths

Scales to millions of files



©2024 Databricks Inc. — All rights reserved 44

Additional Features



©2024 Databricks Inc. — All rights reserved

Generated Columns
A generated column is a special column that’s defined with a SQL 
Expression

CREATE TABLE events(

eventId BIGINT,

data STRING,

eventType STRING,

eventTime TIMESTAMP,

eventDate date GENERATED ALWAYS AS (CAST(eventTime AS
DATE))

)

PARTITIONED BY (eventType, eventDate)



©2024 Databricks Inc. — All rights reserved

Generated Columns

Querying a generated column will apply partition pushdown if you use 
the generated column, or the column it was generated from

SELECT * From events WHERE eventTime >= "2020-10-01 
00:00:00" <= "2020-10-01 12:00:00"

For the above query, we will only read the date 2020-10-01 even though 
the partition filter is not specified



©2024 Databricks Inc. — All rights reserved

Support for Identity Columns, Primary + 
Foreign Key Constraints

● Define IDENTITY column on a 

table

● Delta can automatically generate 

unique integer values when new 

rows are added to the table with 

IDENTITY columns  

● Users can also explicitly insert 

values for the IDENTITY columns

IDENTITY COLUMNS PRIMARY + FOREIGN KEY 
DECLARATIONS

GOAL: Enable data quality and easy table relationship discovery for tools and users that are 
not familiar with the data model.

● Declare unenforced Primary and 

Foreign keys with ALTER TABLE

● Visible in 

INFORMATION_SCHEMA and 

DESCRIBE TABLE

● Allow end users to understand 

relationships between tables



©2024 Databricks Inc. — All rights reserved

Identity Columns
Delta Lake Identity Support

1

CREATE TABLE IF NOT EXISTS dim_loan
(
Loan_sk BIGINT GENERATED ALWAYS AS IDENTITY,  
Loan_id BIGINT,
……..
)
USING DELTA
LOCATION 'abfs://<container>@<storage account>/'

Options
ALWAYS | BY DEFAULT
START WITH start
INCREMENT BY step

• Always option doesn’t allow column 
override 

• By Default option does allow column 
override but *doesn’t enforce 
duplicates*

• Start With option allows you to start 
anywhere

• Increment option allows you to set the 
increment



©2024 Databricks Inc. — All rights reserved

POP QUIZ

49



©2024 Databricks Inc. — All rights reserved 50

Speeding up queries



©2024 Databricks Inc. — All rights reserved

Speeding up queries

Reading only the necessary rows for a query = Efficient query processing

How does the transaction log help with that?



©2024 Databricks Inc. — All rights reserved

Partitioned Tables : Partition Pruning

/mytable/
part=1/part_00001.parquet
part=1/part_00002.parquet
part=2/part_00001.parquet
part=2/part_00002.parquet

select * from mytable where part = 2



©2024 Databricks Inc. — All rights reserved

Data Skipping

Simple, well-known I/O pruning technique
● Track file-level stats like min & max
● Leverage them to avoid scanning 

irrelevant files

SELECT input_file_name() as “file_name”,

min(col) AS “col_min”,

max(col) AS “col_max”

FROM table

GROUP BY input_file_name()

file_name col_min col_max

1.parquet 6 8

2.parquet 3 10

3.parquet 1 4



©2024 Databricks Inc. — All rights reserved

Data Skipping

SELECT file_name FROM index 

WHERE col_min < 5 AND col_max >= 5 

file_name col_min col_max

1.parquet 6 8

2.parquet 3 10

3.parquet 1 4



©2024 Databricks Inc. — All rights reserved 55

Data Layout Challenges



©2024 Databricks Inc. — All rights reserved

Hive-style partitioning
Working example: A table partitioned by customer ID and date

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

Number and size of files is 
different for each partition

Some partitions may not 
contain any files (yet)

Each partition contains files 
for one customer+date pair
e.g. (The Whale, 2023-02-

07)



©2024 Databricks Inc. — All rights reserved

Hive-style partitioning
A table can be over- or under-partitioned — or both at the same time!

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Costly overread to query just 
one hour for a big customer

Costly small-file explosion to 
query a small customer

Prefer to partition by week? 
By hour? Have to rewrite the 

whole table

Target file 
size



©2024 Databricks Inc. — All rights reserved

Hive-style partitioning
Most ingest is small, causing small-file explosion

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Ingest new data every hour?
24 files per customer/day.

Ingest small data for many 
customers at once?

One tiny file per customer.

Target file 
size

Frequent table maintenance 
needed to control file counts



©2024 Databricks Inc. — All rights reserved

OPTIMIZE your table

OPTIMIZE my_table

{
"remove": {

"path": "part-00001-9…..snappy.parquet",
"deletionTimestamp": 1512909768000,
"dataChange": false

}
}
{

"add": {
"path": "part-0000…..gz.parquet",
"size": 256841454,
"modificationTime": 1512909768000,
"dataChange": false,
"stats":

"{
\"numRecords\":123456789,\"minValues\":{\"val..."

}
}



©2024 Databricks Inc. — All rights reserved

Z-Ordering

optimize my_table zorder by col

file_name col_min col_max

1.parquet 6 8

2.parquet 3 10

3.parquet 1 4

file_name col_min col_max

1.parquet 1 3

2.parquet 4 7

3.parquet 8 10

Old Layout New Layout



©2024 Databricks Inc. — All rights reserved

Z-Ordering

file_name col_min col_max

1.parquet 6 8

2.parquet 3 10

3.parquet 1 4

file_name col_min col_max

1.parquet 1 3

2.parquet 4 7

3.parquet 8 10

Old Layout New Layout

select * from table where col = 7



©2024 Databricks Inc. — All rights reserved

Challenges with Z-order
● Due to the span of the Z-Curve, some files will have 

min/max range equal to the full range, and data 
skipping can’t skip these files.

● Any new data ingested after the OPTIMIZE ZORDER BY 
run is not automatically clustered, and the user needs 
to rerun the command to cluster the new data.

● OPTIMIZE ZORDER BY reclusters already well-clustered 
data, resulting in high write amplification.

● ZORDER BY columns are not persisted and the user is 
required to remember the previous ZORDER BY 
columns, often causing user errors if different columns 
are used

Z-Curve



©2024 Databricks Inc. — All rights reserved 63

Data Layout Innovations



©2024 Databricks Inc. — All rights reserved

Liquid Clustering - No more partitions

● Fast 
○ Faster writes and similar reads vs. well-tuned partitioned tables

● Self-tuning 
○ Avoids over- and under-partitioning

● Incremental
○ Automatic partial clustering of new data

● Skew-resistant
○ Produces consistent file sizes and low write amplification

● Flexible
○ Want to change the clustering columns? No problem!

● Better concurrency



©2024 Databricks Inc. — All rights reserved

Liquid clustering Usage Walkthrough

Create a new Delta table with liquid clustering
CREATE [EXTERNAL] TABLE tbl (id INT, name STRING)  CLUSTER BY(id)

Change Liquid Clustering keys on existing clustered table:
ALTER TABLE tbl CLUSTER BY (name);

Clustering data in a Delta table with liquid clustering:
OPTIMIZE tbl;

What you don’t need to worry about: 

● Optimal file sizes
● Whether a column can be used as a clustering key 
● Order of clustering keys



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficiently balance clustering vs. file size

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficiently balance clustering vs. file size

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

One file covers several dates 
for a single small customer



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficiently balance clustering vs. file size

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

One file covers several dates 
for a single small customer



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficiently balance clustering vs. file size

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

One file covers several dates 
for a single small customer

One file covers several 
customers for a single date



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficiently balance clustering vs. file size

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

One file covers several dates 
for a single small customer

One file covers several 
customers for a single date



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficiently balance clustering vs. file size

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

One file covers several dates 
for a single small customer

One file covers several 
customers for a single date

One file covers several dates 
for several tiny customers



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficiently balance clustering vs. file size

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

One file covers several dates 
for a single small customer

One file covers several 
customers for a single date

One file covers several dates 
for several tiny customers



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
But wait, there’s more!

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Automatically cluster heavy partitions more finely

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

Subdivide a heavy partition 
by hours within a day



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Automatically cluster heavy partitions more finely

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

Subdivide a heavy partition 
by hours within a day



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
But wait, there’s more!

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficient ingest with lazy/partial clustering

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

At first, one file per ingest, 
each covering all customers



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficient ingest with lazy/partial clustering

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

At first, one file per ingest, 
each covering all customers



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficient ingest with lazy/partial clustering

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

As data accumulates, start 
splitting out customers



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficient ingest with lazy/partial clustering

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

As data accumulates, start 
splitting out customers



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficient ingest with lazy/partial clustering

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

Later, table maintenance 
combines the last small files



©2024 Databricks Inc. — All rights reserved

Liquid clustering in action
Efficient ingest with lazy/partial clustering

2023-02-05 2023-02-06 2023-02-07 2023-02-08

Customer A

Customer B

The Whale

Tiny 1

Tiny 2

Customer C

Target file 
size

Later, table maintenance 
combines the last small files



©2024 Databricks Inc. — All rights reserved

Liquid under-the-hood

Better data-skipping due 
to hilbert curves



©2024 Databricks Inc. — All rights reserved

Liquid clustering is incremental
OPTIMIZE my_table 

Z-Cube 1

A Z-Cube



©2024 Databricks Inc. — All rights reserved

Z-Cube 1

Liquid clustering is incremental

OPTIMIZE my_table 

A Z-Cube New data

Incorporate new data into 
existing Z-cubes if cubes < 150 GB

Z-Cube 1

Z-Cube 1



©2024 Databricks Inc. — All rights reserved

Z-Cube 1

Tables can have many ZCubes

● When we get to 150gb, we start a new ZCube to 
minimize write amplification on Zorder

● When data is removed from ZCube, possibly due 
to DML, once the ZCube reaches a threshold its 
eligible for more data to be added to itZ-Cube 2

Z-Cube 3



©2024 Databricks Inc. — All rights reserved

POP QUIZ

87



©2024 Databricks Inc. — All rights reserved

UniForm



©2024 Databricks Inc. — All rights reserved

Choosing a data lake format?

89

Delta Lake

Parquet

Metadata

Apache Iceberg

Parquet

Metadata

Apache Hudi

Parquet

Metadata
Metadata
Used for transactional 
source of truth, 
concurrency control, etc.

Data
All formats use Parquet!

Connector 
Ecosystem

Microsoft 
Fabric



Delta Lake
With UniForm

Parquet

Metadata
Metadata
Used for transactional 
source of truth, 
concurrency control, etc.

Connector 
Ecosystem

Microsoft 
Fabric

Data
All formats use Parquet!

Delta UniForm
Write Delta, read as Iceberg



©2024 Databricks Inc. — All rights reserved

How Delta Lake UniForm works

91

✓ Metadata automatically generated to 

make Delta accessible as Iceberg/Hudi

✓ Parquet files remain the same

✓ Metadata is co-located with data Delta Lake UniForm

Data stored in Delta can be read 
as if it were Iceberg or Hudi



db1.table1

_delta_log

data layer

000.checkpoint 001.json 002.json



DataFileAddFile

path

partitionValues

size

stats.numRecords

stats.minValues

stats.maxValues

stats.nullCount

file_path

partition

file_size_in_bytes

record_count

lower_bounds

upper_bounds

null_value_counts



INSERT INTO

Catalog

Delta writer

1) Writes and commits

INSERT INTO

Iceberg writer

1) Writes data and metadata

2) Commits to catalog

Catalog2) Notify catalog of 
commits

SELECT

SELECT

Delta reader

Iceberg reader

Observation: Very similar writes on both sides



INSERT INTO

Catalog

SELECT

Delta writer

1) Writes and commits

INSERT INTO

Iceberg writer

1) Writes data and metadata

2) Commits to catalog SELECT

Delta reader

Iceberg reader

Catalog

Observation: Very similar writes on both sides

2) Notify catalog of 
commits



INSERT INTO

Delta writer

1) Writes and commits SELECT

Delta reader

Iceberg reader

Catalog

UniForm concept unifies the write path

2) Notify catalog of 
commits



Unity
Catalog

INSERT INTO

Delta writer

1) Writes and commits

Iceberg
REST API

SELECT

Delta reader

Iceberg reader

UniForm as implemented by Databricks

2) Notify catalog of 
commits



v0 v1 v2 v3

Iceberg v1 Iceberg v2



v0

Iceberg v1 (Delta v0)

v1 v2 v3

Iceberg v2 (Delta v1, v2, v3)

v0 v1 v2 v3

Iceberg v1 Iceberg v2

Universal Format



©2024 Databricks Inc. — All rights reserved

POP QUIZ

100



©2024 Databricks Inc. — All rights reserved

Use Cases



©2024 Databricks Inc. — All rights reserved

Challenge
Leverage data across their business lines to 
impact sales, purchasing, supply chain, and 
product optimization 

“Our legacy systems could take weeks to ETL 
data for analytics and reporting. As a result, we 
were unable to support a variety of use cases, 
impacting analyst and line-of-business 
satisfaction.”

Lara Minor

Senior enterprise data manager

Industry: 
Retail

Use cases
Advertising effectiveness,
customer segmentation,
product matching,
recommendation engines



©2024 Databricks Inc. — All rights reserved

Solution
● With Databricks, build high-performance 

ETL pipelines that support batch and real-
time workloads. 

● The pipelines feed into Delta Lake which 
provides secure access to curated data

“Delta Lake provides ACID capabilities that simplify 
data pipeline operations to increase pipeline reliability 
and data consistency. At the same time, features like 
caching and auto-indexing enable efficient and 
performant access to the data.”

Lara Minor

Senior enterprise data manager

Industry: 
Retail

Use cases
Advertising effectiveness,
customer segmentation,
product matching,
recommendation engines



©2024 Databricks Inc. — All rights reserved

Outcome
70% reduction in ETL pipeline creation time

48x improvement in time to process ETL 
workloads (4 hours to 5 minutes)

“One of the benefits of this platform is how fast 
people can come up to speed on it. All that data is 
coming in, and more business units are using it across 
the enterprise in a self-service manner that was not 
possible before.”

Lara Minor

Senior enterprise data manager

Industry: 
Retail

Use cases
Advertising effectiveness,
customer segmentation,
product matching,
recommendation engines



©2024 Databricks Inc. — All rights reserved

Challenge
Creating the most efficient transportation network 
in North America

● Unlock value of data stuck in legacy DW 
systems

● Massive data volumes from data streams from 
IoT sensors

● Legacy systems struggled to scale
● This made telemetry-based use cases 

leveraging machine learning (ML) and AI nearly 
impossible.

Industry: 
Manufacturing and Logistics

Use cases
Demand forecasting



©2024 Databricks Inc. — All rights reserved

Solution
Create an open, interoperable and rapid data 
lakehouse. 

● Delta Lake as the open storage layer brought 
efficiency and portability at TB-scale

● Stream data real-time to Delta Lake - high 
performance and reliability at any scale

● Single copy of data for easier analysis and 
reproducibility

● Build ML models atop single source of truth data

Industry: 
Manufacturing and Logistics

Use cases
Demand forecasting



©2024 Databricks Inc. — All rights reserved

Outcome

99.8% Faster freight recommendations
$2.7M in IT infrastructure savings

Industry: 
Manufacturing and Logistics

Use cases
Demand forecasting



©2024 Databricks Inc. — All rights reserved

Replicating application data 
to the Lakehouse



©2024 Databricks Inc. — All rights reserved

Current Challenges

Updates in ETL struggle to find 
changes in the data from 
version to version in large 
tables

Without information regarding 
the specific changes to be 
made, all data must be 
compared

Identifying Changes



©2024 Databricks Inc. — All rights reserved

Current Challenges

Updates in ETL struggle to find 
changes in the data from 
version to version in large 
tables

Without information regarding 
the specific changes to be 
made, all data must be 
compared

Real-time updates to BI and 
analytics require additional 
processing as changes arrive

Recalculating full datasets 
causes downtime to users 
incompatible with real-time 
needs

Updating BI & Analytics DataIdentifying Changes

Audits of records, en masse or 
individually, demand the ability 
to readily construct data as it 
was at any or every  point in 
time

Digging through all versions is 
impractical yet required to 
meet compliance requirements



©2024 Databricks Inc. — All rights reserved

Current Challenges

Updates in ETL struggle to find 
changes in the data from 
version to version in large 
tables

Without information regarding 
the specific changes to be 
made, all data must be 
compared

Real-time updates to BI and 
analytics require additional 
processing as changes arrive

Recalculating full datasets 
causes downtime to users 
incompatible with real-time 
needs

Updating BI & Analytics DataIdentifying Changes

Audits of records, en masse or 
individually, demand the ability 
to readily construct data as it 
was at any or every  point in 
time

Digging through all versions is 
impractical yet required to 
meet compliance requirements

Producing an Audit Trail



©2024 Databricks Inc. — All rights reserved

Centralizing all your data shouldn’t be hard
One of the most common use cases

External database
users
transactions
products 
items
…

raw cdc files
Sent on blob storage 

or message queue

Extract cdc
External tool

…



©2024 Databricks Inc. — All rights reserved

Use autoloader to incrementally ingest your 
raw data into Delta Lake

External database
users
transactions
products 
items
…

raw cdc files
Sent on blob storage 

or message queue

Extract cdc
External tool

…

raw_cdc
Full cdc history

Auto Loader
Incrementally 
load new data

spark.readStream
.format("cloudFiles")
.option("cloudFiles.format", 

"json")
.load("/raw_cdc_files")
.writeStream
.trigger(availableNow=True)
.toTable("raw_cdc"))



©2024 Databricks Inc. — All rights reserved

Use Structured Streaming to incrementally clean 
records from bronze to silver

raw_cdc
Full cdc history

app_silver
Materialize client table, 

data available in SQL 

External database
users
transactions
products 
items
…

raw cdc files
Sent on blob storage 

or message queue

Extract cdc
External tool

…

Auto Loader
Incrementally 
load new data

Clean records
Using structured 

streaming

spark.readStream
.format("delta")
.table("raw_cdc")
.transform(...)
.writeStream

.foreachBatch(mergeIntoSilver)
.trigger(availableNow=True)
.start()



©2024 Databricks Inc. — All rights reserved

MERGE into Gold Table
One of the most common use cases

raw_cdc
Full cdc history

app_silver
Materialize client table, 

data available in SQL 

app_gold
Clean data ready for 

ML / Dashboards

External database
users
transactions
products 
items
…

raw cdc files
Sent on blob storage 

or message queue

Extract cdc
External tool

…

Auto Loader
Incrementally 
load new data

Delta SQL Merge
Merge based on 

client ID

Delta CDC + Merge
Propagate updates 

downstream

delta.enableChangeDataFeed = true



©2024 Databricks Inc. — All rights reserved

Developing AI/ML models with 
Delta Lake



©2024 Databricks Inc. — All rights reserved

Reproducibility for AI/ML development

Good ML starts with high-quality data. 

Model reproducibility starts with data reproducibility

Many factors affect the outcome of a model

• Adding new data sets
• Data distribution
• Sample changes



©2024 Databricks Inc. — All rights reserved

Delta Lake makes model reproducibility easy
Use cases: model retraining, comparison of different model versions, debugging

Dataset versioning
Automatic versioning for every change (insert, delete, update)

Change tracking
Maintain a detailed log of all data modifications, facilitates audits and lineage

Full history and rollback
Rollback to previous versions of the dataset as needed



©2024 Databricks Inc. — All rights reserved

Step 1: Initial model training
# Initialize Spark session
spark = SparkSession.builder.appName("DeltaLakeExample").getOrCreate()

# Load version 1 of the dataset
df_v1 = spark.read.format("delta").option("versionAsOf", 1).load("/path/to/delta-table")

# Preprocess data
assembler = VectorAssembler(inputCols=["feature1", "feature2"], outputCol="features")
data_v1 = assembler.transform(df_v1)

# Train initial model
lr = LinearRegression(featuresCol="features", labelCol="label")
model_v1 = lr.fit(data_v1)

# Save the model
model_v1.save("/path/to/save/model_v1")



©2024 Databricks Inc. — All rights reserved

Step 2: Adding new data
# Load new data
new_data = spark.read.format("csv").option("header", "true").load("/path/to/new-data.csv")

# Merge new data into the Delta table
new_data.write.format("delta").mode("append").save("/path/to/delta-table")



©2024 Databricks Inc. — All rights reserved

Step 3: Retraining the model
# Load version 2 of the dataset
df_v2 = spark.read.format("delta").option("versionAsOf", 2).load("/path/to/delta-table")

# Preprocess data
data_v2 = assembler.transform(df_v2)

# Retrain model
model_v2 = lr.fit(data_v2)

# Save the new model
model_v2.save("/path/to/save/model_v2")

# Compare model performance
predictions_v1 = model_v1.transform(data_v2)
predictions_v2 = model_v2.transform(data_v2)



©2024 Databricks Inc. — All rights reserved

Step 3: Retraining the model
# Load version 2 of the dataset
df_v2 = spark.read.format("delta").option("versionAsOf", 2).load("/path/to/delta-table")

# Preprocess data
data_v2 = assembler.transform(df_v2)

# Retrain model
model_v2 = lr.fit(data_v2)

# Save the new model
model_v2.save("/path/to/save/model_v2")

# Compare model performance
predictions_v1 = model_v1.transform(data_v2)
predictions_v2 = model_v2.transform(data_v2)



©2024 Databricks Inc. — All rights reserved

Step 4: Rollback and debugging
# Rollback to version 1 of the dataset
df_rollback = spark.read.format("delta").option("versionAsOf", 1).load("/path/to/delta-table")

# Compare version 1 and version 2 data
df_v2 = spark.read.format("delta").option("versionAsOf", 2).load("/path/to/delta-table")

df_rollback.show()
df_v2.show()



©2024 Databricks Inc. — All rights reserved

Step 4: Rollback and debugging
# Rollback to version 1 of the dataset
df_rollback = spark.read.format("delta").option("versionAsOf", 1).load("/path/to/delta-table")

# Compare version 1 and version 2 data
df_v2 = spark.read.format("delta").option("versionAsOf", 2).load("/path/to/delta-table")

df_rollback.show()
df_v2.show()

Rollback and history() make it easy to trace the lineage of all changes to the underlying 
data, ensuring that your model can be reproduced with exactly the same data it was built 

on.



©2024 Databricks Inc. — All rights reserved

Roadmap

125



©2024 Databricks Inc. — All rights reserved 126

Roadmap

Simplified user experience

Data integrity and reliability

Seamless interoperability

1

2

3



©2024 Databricks Inc. — All rights reserved 127

Roadmap

Simplified user experience

Data integrity and reliability

Seamless interoperability

1

2

3



©2024 Databricks Inc. — All rights reserved 128

Simplified data management

Convert partitioned tables to Liquid without rewrite
Upgrade tables in-place to Liquid



©2024 Databricks Inc. — All rights reserved 129

Simplified data management

Identity columns
Easy button for primary and foreign keys

Convert partitioned tables to Liquid without rewrite
Upgrade tables in-place to Liquid



©2024 Databricks Inc. — All rights reserved 130

Simplified data management

Type widening
Seamless, no-copy updates to wider data types (e.g., INT > LONG)

Identity columns
Easy button for primary and foreign keys

Convert partitioned tables to Liquid without rewrite
Upgrade tables in-place to Liquid



©2024 Databricks Inc. — All rights reserved 131

Simplified data management

Type widening
Seamless, no-copy updates to wider data types (e.g., INT > LONG)

Identity columns
Easy button for primary and foreign keys

Convert partitioned tables to Liquid without rewrite
Upgrade tables in-place to Liquid

VARIANT data type
Highly flexible, highly performant data type for semi-structured data



©2024 Databricks Inc. — All rights reserved 132

Roadmap

Simplified user experience

Data integrity and reliability

Seamless interoperability

1

2

3



©2024 Databricks Inc. — All rights reserved 133

Data consistency and availability across multiple 
environments

Coordinated Commits 
Multi-cluster, multi-cloud writes



©2024 Databricks Inc. — All rights reserved 134

Data consistency and availability across multiple 
environments

Built-in cross-region disaster recovery 
Ensure writes are accurately reflected in secondary region

Coordinated Commits 
Multi-cluster, multi-cloud writes



©2024 Databricks Inc. — All rights reserved 135

Data consistency and availability across multiple 
environments

Built-in cross-region disaster recovery 
Ensure writes are accurately reflected in secondary region

Coordinated Commits 
Multi-cluster, multi-cloud writes

Collations
Custom sorting and comparison rules



©2024 Databricks Inc. — All rights reserved 136

Data consistency and availability across multiple 
environments

Built-in cross-region disaster recovery 
Ensure writes are accurately reflected in secondary region

Coordinated Commits 
Multi-cluster, multi-cloud writes

Collations
Custom sorting and comparison rules

Spark Connect support
Improved debuggability, upgradability and reliability



©2024 Databricks Inc. — All rights reserved 137

Data consistency and availability across multiple 
environments

Built-in cross-region disaster recovery 
Ensure writes are accurately reflected in secondary region

Coordinated Commits 
Multi-cluster, multi-cloud writes

Multi-statement and Multi-table transactions 
Atomic transactions across tables

Collations
Custom sorting and comparison rules

Spark Connect support
Improved debuggability, upgradability and reliability



©2024 Databricks Inc. — All rights reserved 138

Roadmap

Simplified user experience

Data integrity and reliability

Seamless interoperability

1

2

3



©2024 Databricks Inc. — All rights reserved

Seamless interoperability

Delta Kernel 
Integrate your client once, get the latest Delta innovations forever.



©2024 Databricks Inc. — All rights reserved

Seamless interoperability

Delta Kernel 
Integrate your client once, get the latest Delta innovations forever.

Expanding connector ecosystem
Collaborating with community and partners to build connectors with Kernel



©2024 Databricks Inc. — All rights reserved

Seamless interoperability

Delta Kernel 
Integrate your client once, get the latest Delta innovations forever.

Expanding connector ecosystem
Collaborating with community and partners to build connectors with Kernel

Delta UniForm 
Improved interoperability with latest Delta capabilities - e.g., Deletion Vectors



©2024 Databricks Inc. — All rights reserved

POP QUIZ

142



Learn more at the summit!

• We kindly request your valuable 
feedback on this session.

• Please take a moment to rate 
and share your thoughts about 
it.

• You can conveniently provide 
your feedback and rating 
through the Mobile App.

Tells us what you think What to do next?

• Visit the Learning Hub Experience at 
Moscone West, 2nd Floor!

• Take complimentary certification at 
the event; come by the Certified 
Lounge

• Visit our Databricks Learning 
website for more training, courses 
and workshops! 
databricks.com/learn

Get trained and certified

• Discover more related sessions in 
the mobile app!

• Visit the Demo Booth: Experience 
innovation firsthand!

• More Activities: Engage and connect 
further at the Databricks Zone!

Databricks 
Events App

https://www.databricks.com/learn/


©2024 Databricks Inc. — All rights reserved


	This information is provided to outline Databricks’ general product direction and is for informational purposes only. Customers who purchase Databricks services should make their purchase decisions relying solely upon services, features, and functions that are currently available. Unreleased features or functionality described in forward-looking statements are subject to change at Databricks discretion and may not be delivered as planned or at all
	Deep Dive into Delta Lake and UniForm
	Agenda
	Tech Check
	Slide Number 5
	Cats or Dogs?
	Delta Lake
	Delta Lake with UniForm is an open format that brings performance, interoperability, and ACID transactions to open data lakes.
	Delta Lake Key Features
	Delta Lake - quickstart
	Thriving ecosystem
	Thriving ecosystemDelta FlinkDelta Trino Delta Rust / deltalake PythonApache DruidGoogle BigQueryDuckDB
	Community
	Delta Lake - Pull Requests Merged
	Delta Lake:The most adopted open lakehouse format 
	Slide Number 17
	POP QUIZ
	Unpacking the transaction log
	Delta Lake on Disk
	Delta Lake on Disk
	Table = result of a set of actions
	Example of an addFile action
	ACID properties
	Implementing Atomicity
	Ensuring Serializability
	Solving Conflicts Optimistically
	Transactions and reliability are great, but what about performance?
	Handling Massive Metadata
	Updating Delta Lake’s State
	Updating Delta Lake’s State
	Finding the latest metadata
	Time Travel
	Time Traveling by version
	Time Traveling by timestamp
	Time Traveling by timestamp
	Time Traveling by timestamp
	Time Traveling by timestamp
	The Single Source of Truth!
	Information required to plan a query
	Getting the schema of a Delta Lake table
	Getting the partition columns
	Getting the list of files to read
	Additional Features
	Generated Columns
	Generated Columns
	Support for Identity Columns, Primary + Foreign Key Constraints
	Identity Columns
	POP QUIZ
	Speeding up queries
	Speeding up queries
	Partitioned Tables : Partition Pruning
	Data Skipping
	Data Skipping
	Data Layout Challenges
	Hive-style partitioning
	Hive-style partitioning
	Hive-style partitioning
	OPTIMIZE your table
	Z-Ordering
	Z-Ordering
	Challenges with Z-order
	Data Layout Innovations
	Liquid Clustering - No more partitions
	Liquid clustering Usage Walkthrough
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid clustering in action
	Liquid under-the-hood
	Liquid clustering is incremental
	Liquid clustering is incremental
	Tables can have many ZCubes
	POP QUIZ
	UniForm
	Choosing a data lake format?
	Slide Number 90
	How Delta Lake UniForm works
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	POP QUIZ
	Use Cases
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Replicating application data to the Lakehouse
	Current Challenges
	Current Challenges
	Current Challenges
	Centralizing all your data shouldn’t be hard
	Use autoloader to incrementally ingest your raw data into Delta Lake
	Use Structured Streaming to incrementally clean records from bronze to silver
	MERGE into Gold Table
	Developing AI/ML models with Delta Lake
	Reproducibility for AI/ML development
	Delta Lake makes model reproducibility easy
	Step 1: Initial model training
	Step 2: Adding new data
	Step 3: Retraining the model
	Step 3: Retraining the model
	Step 4: Rollback and debugging
	Step 4: Rollback and debugging
	Roadmap
	Roadmap
	Roadmap
	Simplified data management
	Simplified data management
	Simplified data management
	Simplified data management
	Roadmap
	Data consistency and availability across multiple environments
	Data consistency and availability across multiple environments
	Data consistency and availability across multiple environments
	Data consistency and availability across multiple environments
	Data consistency and availability across multiple environments
	Roadmap
	Seamless interoperability
	Seamless interoperability
	Seamless interoperability
	POP QUIZ
	Learn more at the summit!
	Slide Number 144

